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ABSTRACT: Synthetic regulatory networks with prescribed functions are
engineered by assembling a reduced set of functional elements. We could also
assemble them computationally if the mathematical models of those functional
elements were predictive enough in different genetic contexts. Only after
achieving this will we have libraries of models of biological parts able to provide
predictive dynamical behaviors for most circuits constructed with them. We
thus need tools that can automatically explore different genetic contexts, in
addition to being able to use such libraries to design novel circuits with targeted
dynamics. We have implemented a new tool, AutoBioCAD, aimed at the
automated design of gene regulatory circuits. AutoBioCAD loads a library of
models of genetic elements and implements evolutionary design strategies to
produce (i) nucleotide sequences encoding circuits with targeted dynamics that
can then be tested experimentally and (ii) circuit models for testing regulation
principles in natural systems, providing a new tool for synthetic biology. AutoBioCAD can be used to model and design genetic
circuits with dynamic behavior, thanks to the incorporation of stochastic effects, robustness, qualitative dynamics, multiobjective
optimization, or degenerate nucleotide sequences, all facilitating the link with biological part/circuit engineering.
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The engineering of genetic information systems in living
cells requires the processing of intricate signals between

analog and noisy biological systems. In the long run, we think
that it will not be possible to keep the current manual
engineering used in synthetic biology. A new engineering
paradigm in synthetic biology consists of the design,
construction, and characterization of synthetic circuits all
carried out, unsupervised, by computers. We can define
biological design automation (BDA) analogously to electronic
design automation,1 as the field that develops computational
tools for synthetic biology following a standard design pipeline.
Alternatively, we could exploit the automation terminology to
the extreme case, where the computer is not just aiding but
doing the full design unsupervised. For instance, it is not the
same to use MS Word to write a book as to let your computer
write the book. In synthetic biology, we call this approach full
biodesign automation (FBDA), and our tool AutoBioCAD
implements it by outputting, in standard formats, the
mathematical models and nucleotide sequences of gene circuits
from an input consisting in a specified behavior (Figure 1).
To implement such FBDA, we use evolutionary computation

algorithms.2,3 They consist of optimization iterations involving
a mutation operator and a fitness function for selection. In
biological applications, only the FBDA of proteins and nucleic
acids has allowed the de novo production of a nucleotide
sequence.4−7 However, this has not been possible in the case of
regulatory networks, due to the insufficient prediction capability
of the effects of arbitrary mutations on function. We propose to
resolve this challenge by taking advantage of the development
of genetic regulatory elements with characterized behavior8−10

and of the modularity observed when exchanging such
elements.10−12 This modularity has already been exploited in
the rational design of gene networks from a set of standard
models selected from a library.13−18 In this work, we also
exploit the modularity of transcriptional and post-transcrip-
tional regulatory elements to design functional circuits,7

discarding interferences between transcription and trans-
lation.12,19 Importantly, we can also use evolutionary
computation to determine the optimal kinetic parameters for
given biological parts in such a way that the corresponding
assembled circuit best fits experimental data.
Here, we are not restricted to the discovery of the optimal set

of parts that match a specified behavior for a fixed
topology.20−22 Rather, we aim to solve the general problem
of regulatory network design (Figure 1). Earlier computational
design approaches23−30 were not aimed at producing a
nucleotide sequence that could be tested experimentally, nor
at exploiting a library of standard models characterized from
experimental data. Our approach is also different from the one
presented by Beal and colleagues,31 because we exploit
evolutionary computation to design the network and the
sequences in one single step. Our methodology is independent
of the chosen mathematical model, is scalable, and is easily
updated. It also allows us to work with multiple libraries and to
optimize network topology. Here, we provide an open-source

Special Issue: IWBDA 2012

Received: September 15, 2012
Published: November 19, 2012

Research Article

pubs.acs.org/synthbio

© 2012 American Chemical Society 230 dx.doi.org/10.1021/sb300084h | ACS Synth. Biol. 2013, 2, 230−236

pubs.acs.org/synthbio


software suite (AutoBioCAD) that implements an automated
design process that assembles SBML models32 of genetic
elements, evaluates the performance of the resulting network
according to its dynamics, and couples this with appropriate
landscape-sampling techniques in order to find the nucleotide
sequences of the desired functional networks. AutoBioCAD is a
new computational tool for the de novo circuit design problem
(FBDA) that, by exploring both the topology and parameter
spaces, is able to produce testable nucleotide sequences.

■ RESULTS AND DISCUSSION
We developed AutoBioCAD to design genetic networks with a
targeted behavior by using a library of mathematical models of
biological parts (Figure 2). By taking advantage of a
combinatorial construction of genetic networks,11 AutoBio-
CAD is a design platform that harnesses a library of models to
uncover the possible dynamical behaviors. AutoBioCAD
supports two design strategies, enumeration and optimization,
and can account for stochastic effects. In the design by
enumeration strategy, several networks are constructed and
simulated to explore the design space. Then, the networks that
show the dynamical behavior of interest are selected. This
approach may be exhaustive if the libraries are small, or
heuristic, guided by rational design techniques. In the design by
optimization (FBDA) strategy, an evolutionary scheme is
applied to iteratively assemble models of existing parts and
evaluate the performance of the resulting network according to
a dynamic behavior-based fitness function.33

Assembly of Part Models. The mathematical model of a
network is constructed by assembling models of basic parts.
These parts can be promoters, genes (coding or non-coding),
and devices. Each part is modeled by transfer functions that
relate the output to the input values. Promoter models account

only for the reaction of transcription, which we approach with a
Hill-like function.34 Here we assume that all genes downstream
of a promoter have the same transcription rate. Gene models
account for the reactions of translation (only for coding
sequences) and degradation/dilution of mRNA and proteins.
We consider first-order and enzymatic degradation kinetics,
without considering the coupling between species.35 Non-
coding genes are assumed to be small RNAs that can interact
with other elements of the system by exerting regulatory
actions.7 Devices are independent modules with defined
function, such as operons, and can be considered by themselves
as networks. We only allow the assembly of the following
instances: (i) promoter + gene, (ii) gene + gene (polycistronic
elements, except for non-coding genes, which form unique
transcription units), (iii) gene + promoter, or (iv) add device.
To store mathematical models, in addition to the part
sequence, we used the SBML format.32 Hence, we have an
SBML file for the model of each biological part, just as
crystallographic data is stored in PDB format.36 Models can
represent theoretical parts (for a design process with higher
degrees of freedom) or experimental parts (where the SBML
includes the nucleotide sequence). The nucleotide sequence of
the assembled network is written annotated in GenBank
format.37

Degenerate Sequences. We introduce the concept of
degenerate part, defined as a biological part with a sequence,
which contains a degenerate nucleotide known to produce a
variation in the associated kinetic parameters when mutated.
Solutions containing degenerate parts will produce degenerate
sequences suitable for experimental screening. This allows the
introduction of a range of variation for the kinetic parameters
associated with the models of some parts (evolvable kinetic
parameter), allowing the exploration of a larger solution space.
For instance, we may know how to mutate the sequence of a
given promoter in order to modulate the transcription rate or
the dissociation constant with its regulator.38,39 In another
example, we could also know the effects of mutating the 5′
untranslated region (UTR) of an mRNA to change its
translation rate,40 which would be included as a single part
with degeneracy. This part re-engineering would be done only
after finding an optimal solution, avoiding the need of
constructing large libraries. The designer would either construct
the required part or, if experimental screening for the desired
function is possible, create the corresponding degenerate circuit
library.

FBDA I: Optimization Scheme. An initial network is
iteratively modified against dynamical constraints toward a
solution that satisfies the specified behavior. We used Monte
Carlo Simulated Annealing (MCSA) as optimization scheme.41

A mutation operator modifies the network, either by changing
an evolvable kinetic parameter or by changing topology of the
network. For degenerate parts, we considered a discretization of
10 intervals taken in a logarithmic scale between the minimal
and maximal values of the parameters susceptible to be evolved.
Topological changes include part replacement, addition, or
deletion, avoiding the elimination of input- and output-related
elements. Each mutation event has a probability of occurrence
that can be defined by the user. Internally, the algorithm may
adjust on the fly the probability of parameter change in order to
better explore the landscape. After the mutation operator is
applied, a fitness function based on the dynamics of the
network is evaluated to decide whether the mutation is
accepted or rejected. To avoid the solutions of the dynamics of

Figure 1. AutoBioCAD designs regulatory networks from the specified
behavior of the system and outputs a SBML file containing the
mathematical model of that system, its simulated dynamics (in
deterministic or stochastic regime), and its nucleotide sequence. The
behavior can be stationary (e.g., digital devices) or dynamic (e.g.,
oscillators). AutoBioCAD follows an evolutionary computation
approach to implement the FBDA.
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networks where the output and input are not connected (i.e.,
systems where the input does not influence the output), we
calculate the adjacency matrix and its n-th powers at each step.
When the fitness gets stalled for several iterations (e.g., 10% of
the total), we apply a genetic drift operator to produce a longer
jump in the solution space. This jump is random within the first
half of the optimization process; otherwise we restart from the
best solution found until then.42 The MCSA temperature is
continuously adjusted during the process following an
exponential cooling scheme. Accordingly, the initial temper-
ature is usually chosen to be high, hence moving during
evolution from random to adaptive walk.
FBDA II: Convergence. A potential limitation of the FBDA

approach is the convergence, in this case, of the MCSA, as the
time required to find a sufficiently good solution scales with the
complexity of the desired behavior.26,27,29,30 To improve the
convergence, AutoBioCAD admits a fitness function rewarding
qualitative dynamical behavior, done by implementing a
Boolean discretization of the dynamics. Our algorithm exploits
the topological properties of the circuit during optimization to
avoid unfruitful computation, although for complex functions
this could be very time-consuming.

Computational Realization. The program is implemented
in C++ and it reads/writes SBML files. It is compiled and
executed under Linux and Mac OS X environments. The
program reads the design specifications and algorithm
parameters and exports the designed network model in a
SBML file. The libraries SUNDIALS,43 libSBML,44 and
SOSlib45 were linked. AutoBioCAD supports both determin-
istic and stochastic dynamical simulation, based on ordinary
differential or Langevin equations, respectively. A degree of
robustness can also be specified to obtain networks insensitive
to parameter perturbations,33 although at a high computational
cost. For optimization, the convergence basically depends on
the complexity of the targeted behavior, and the dynamics
solver is the most time-consuming step for a given iteration.
AutoBioCAD can run distributed in high performance
computing clusters.

Application. As an advanced example, we applied
AutoBioCAD for designing a minimal biological arithmetic
logic unit (i.e., half-adder).46 This device performs the addition
with carry of two one-bit binary signals. We specified IPTG and
aTc as inputs and sfGFP and mCherry as outputs (sfGFP the
adder, and mCherry the carry). The desired behavior consists
of sfGFP = IPTG XOR aTc and mCherry = IPTG AND aTc

Figure 2. Pseudocode of AutoBioCAD, illustrating two different design strategies: enumeration and optimization of circuits, according to a given
library of models.
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(where XOR and AND represent Boolean operators). Figure 3
shows the circuit we obtained after 105 iterations (about 1 h on
a 2 GHz Intel, although suboptimal solutions can be obtained
with 104 iterations in about 10 min). The circuit couples
transcription control and riboregulation to implement such
logic gates, and it is the result of an FBDA process. In this case,
we did not optimize the parameters of the different part models
(i.e., no degenerate parts). Without imposition of any initial
circuit, we evolved a circuit by replacing, adding, or removing
parts, to finally obtain a set of parts that satisfied the truth Table
of a half-adder (Figure 3). The designed circuit exploits the
constitutive expression of repressors LacI and TetR to couple λ-
cI regulation (positive and negative) with riboregulation. Here,
Raj11 is a small RNA that binds to a cis-repressed 5′ UTR of
the GFP mRNA to activate translation by a conformational
change.7 The incorporation of functional modules into the
library of models can enhance the optimization of a complex
behavior such as this half-adder, taking advantage of a
hierarchical design.47 In addition, its engineering can be
simplified when using a strain carrying the cassette Z148 or a
plasmid with some parts of the circuits. By creating minimal
circuits, we can assess the predictability of the assembled

models, as is the case in the circuit shown in Figure 4, which we
recently engineered in bacteria.7 Although the designed circuit
is composed of experimental parts already characterized and
modeled,7,11,48,49 potential interactions between the regulators
may disturb the expected behavior. An experimental character-
ization of the whole circuit is therefore required.

Discussion. Our approach to modularity in gene circuits is
explained through an analogy with molecular modeling. Most
usual empirical potential energy functions (force fields) used in
molecular mechanics include context effects due to electronic
polarization in an average way.50 Although the partial charges of
an atom depend on its neighborhood, the use of such averaged
values is able to provide accurate molecular dynamics in most
cases. The kinetic properties of biological parts also depend on
the genetic neighborhood.51 For instance, the sequences
upstream or downstream of a promoter can affect its maximal
transcription rate. Could such dependence also be circum-
vented using averaged values in the kinetic parameters of
biological part models? Or are we forced to always include the
context? One line of thought positively answers the first
question by assuming that it would be possible to engineer
parts that minimize the contextual effects. In the previous

Figure 3. Computational design (by optimization) of a biological arithmetic logic unit. The circuit implements a half-adder (addition of two one-bit
binary numbers, with carry). The inputs are IPTG and aTc, and the outputs are sfGFP and mCherry. sfGFP (adder) is the result of IPTG XOR aTc,
while mCherry (carry) is the result of IPTG AND aTc. We also show the simulated behavior.
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example of promoters, insulator sequences were added to
prevent the regulatory effects of neighboring sequences.19 This
way, the inference of biological part models can be tackled
following similar procedures as those used in molecular
modeling: by using a large set of circuits with characterized
single-cell dynamics to compute by optimization the averaged
parameters and then develop the part models that better fit the
experimental data. Here, we could use AutoBioCAD for either
optimizing the parameters or finding appropriate circuit
topologies for such a task.
We developed a computational framework to design

functional genetic networks, which can also be used to solve
SBML models in deterministic or stochastic regimes. This way,
our approach allows the contruction of new libraries of
networks to analyze their functional diversity.33 AutoBioCAD
merged the core of evolutionary computation26 with the
automated assembly of parts13 for network construction and
optimization. Our previous genetic circuit optimizer (Gen-
etdes), although capable of designing circuits with specified
dynamical behaviors, did not use a library of part models; it was
restricted to one particular mathematical model and could not
run stochastic simulations. We exploited our previous network
assembler (Asmparts), which did not allow optimization, to
develop AutoBioCAD. Now, when working with models of
experimental parts, it is able to deliver a nucleotide sequence
(or a diversity of sequences) for the optimal solution, exported
in GenBank format. We could also create libraries of theoretical
models sampling the regulatory motifs and kinetic parameter
values,34 allowing the analysis of regulation principles in natural
systems. We can define functional behaviors such as logic
gating, amplitude filtering, or oscillations as design specifica-
tions. AutoBioCAD can also be applied to find particular
network topologies that allow us to obtain a rapid output

response under a step function as input52 or architectures that
confer robustness to input variations or to noise.53 In addition,
AutoBioCAD can be used as a reverse-engineering tool to fit
the parameter values of a model of interest against experimental
data. In this case, the topology of the network is fixed while we
optimize the parameter space. It can be applied to study the
emergence of new behaviors after specific mutations, replace-
ments, or gene duplications. Importantly, as we provide the
source code, it can be easily extended to more elaborate fitness
functions or part models. Moreover, the exported SBML and
GenBank files can be uploaded into other software suites54−56

for postprocessing (Figure 5). To sum up, AutoBioCAD is an
accessible and versatile computational design tool that will be
helpful in systems and synthetic biology applications.

■ METHODS
Before running AutoBioCAD, the user has to define the target
behavior in the form of dynamics for a given input value or
function. For example, for an AND logic gate, four different
target dynamics have to be defined. The initial network, if
required, is specified as a list of sorted parts to be assembled.
Details and examples are provided in Supporting Information.
AutoBioCAD mainly outputs two standard files for a designed
network: its mathematical model in SBML format32 and its
nucleotide sequence in GenBank format.37

The characterization experiment of the circuit shown in
Figure 4 was performed in E. coli K-12 MG1655-Z1 cells
(MG1655 lacI+ tetR+ araC+) for control over the PLlacO12 and
PLtetO1 promoters.

48 The circuit was encoded in a plasmid with
pMB1 origin and Kanamycin resistance (50 μg/mL). Overnight
cultures were diluted 200 times in 200 μL of M9 within each
well of a plate, which was assayed in an Infinite F500 multiwell
fluorometer (TECAN) at 37 °C with shaking to obtain the

Figure 4. Assembly and simulation of a circuit coupling transcription control and riboregulation. The inputs are IPTG and aTc, and the output is
sfGFP, which is the result of IPTG AND aTc. Two modules can be identified. We also show the simulated behavior against the experimental one.
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measurements of absorbance (600 nm) and fluorescence (480
nm excitation, 530 nm emission for GFP). IPTG and aTc,
when needed, were added at time 0. The absolute fluorescence
was divided by OD600 to have a magnitude per cell, and then
stationary GFP expression values were obtained by taking the
maximum value of the time series, ensuring exponential
growth.7
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